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ABSTRACT
Motivation: Gene regulatory networks underlying temporal proces-
ses, such as the cell cycle or the life cycle of an organism, can exhibit
significant topological changes to facilitate the underlying dynamic
regulatory functions. Thus it is essential to develop methods that
capture the temporal evolution of the regulatory networks. These
methods will be an enabling first step for studying the driving forces
underlying the dynamic gene regulation circuity, and predicting the
future network structures in response to internal and extenal stimuli.
Results: We introduce a kernel reweighted logistic regression for
reverse engineering the dynamic interactions between genes based
on their time series of expression values. We applied the proposed
method to estimate the latent sequence of temporal rewiring net-
works of 588 genes involved in the developmental process during
the life cycle of Drosophila melanogaster. Our results offer the first
glimpse into the temporal evolution of gene networks in a living orga-
nism during its full developmental course. Our results also show that
many genes exhibit distintive functions at different stages along the
developmental cycle.
Availability: All source code and data sets will be made available at
http://www.cs.cmu.edu/∼lesong/code/kernelw
Contact: epxing@cs.cmu.edu

1 INTRODUCTION
Empirical studies showed that many biological networks bear
remarkable similarities in terms of global topological characteri-
stics, such as scale-free and small-world properties, to various other
networks in nature, such as social networks, albeit with different
characteristic coefficients (Barabasi and Albert, 1999). Furthermore,
it was observed that the average clustering factor of real biologi-
cal networks is significantly larger than that of random networks of
equivalent size and degree distribution (Barabasi and Oltvai, 2004);
and biological networks are characterized by their intrinsic modula-
rities (Vászquez et al., 2004), which reflect presence of physically
and/or functionally linked molecules that work synergistically to
achieve a relatively autonomous functionality. These studies have
led to numerous advances towards uncovering the organizational
principles and functional properties of biological networks, and
even identification of new regulatory events (Basso et al., 2005).

However, most of such results are based on analyses of static net-
works, that is, networks with invariant topology over a given set
of molecules. One example is a protein-protein interaction (PPI)
network over all proteins of an organism, regardless of the condi-
tions under which individual interactions may take place. Another
example is a single gene network inferred from microarray data even
though the samples may be collected over a time course or multiple

∗To whom correspondence should be addressed.

conditions. A major challenge in systems biology is to understand
and model, quantitatively, the dynamic topological and functional
properties of cellular networks, such as the rewiring of transcrip-
tional regulatory circuitry and signal transduction pathways that
control behaviors of a cell.

Over the course of a cellular process, such as a cell cycle or an
immune response, there may exist multiple underlying “themes”
that determine the functionalities of each molecule and their relati-
onships to each other, and such themes are dynamical and stochastic.
As a result, the molecular networks at each time point are context-
dependent and can undergo systematic rewiring, rather than being
invariant over time, as assumed in most current biological network
studies. Indeed, in a seminal study by Luscombe et al. (2004), it
was shown that the “active regulatory paths” in a gene regulatory
network of Saccharomyces cerevisiae exhibit dramatic topological
changes and hub transience during a temporal cellular process, or in
response to diverse stimuli. However, the exact mechanisms under-
lying this phenomena remain poorly understood. We refer to this
time- or condition-specific ”active parts” of the biological circuity
as the active time-evolving network, or simply, time-evolving net-
work . Our goal of this paper is to recover the latent time-evolving
network of gene interactions from microarray time course.

What prevents us from an in-depth investigation of the mecha-
nisms that drive the temporal rewiring of biological networks during
various cellular and physiological processes? A key technical hurdle
we face is the unavailability of serial snapshots of the time-evolving
rewiring network during a biological process. Current technology
does not allow for experimentally determining a series of time-
specific networks, for a realistic dynamic biological system, based
on techniques such as yeast two-hybrid or ChIP-chip systems; on
the other hand, use of computational methods, such as structural
learning algorithms for Bayesian networks, is also difficult because
we can only obtain a few observations of gene expressions at each
time point which leads to serious statistical issues in the recovered
networks.

How can one derive a temporal sequence of time-varying net-
works for each time point based on only one or at most a few
measurements of node-states at each time point? If we follow the
naive assumption that each temporal snapshot of gene expressions is
from a completely different network, this task would be statistically
impossible because our estimator (from only the observations at the
time point in question) would suffer from extremely high variance
due to sample scarcity. Previous methods would instead pool obser-
vations from all time points together and infer a single “average”
network (Friedman et al., 2000; Ong, 2002; Basso et al., 2005),
which means they choose to ignore network rewiring and simply
assume that the observations are independently and identically dis-
tributed. To our knowledge, no method is currently available for
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genome-wide reverse engineering of time-varying networks under-
lying biological processes, with temporal resolution up to every
single time point based on measurements of gene expressions.

In this paper, we propose Keller, a new machine learning
algorithm for recovering time-varying networks on a fixed set of
genes from time series of expression values. Keller stems from
the acronym KERWLLOR, which stands for KErnel ReWeighed
l1-regularized LOgistic Regression. Our key assumption is that
the time-evolving networks underlying biology processes vary
smoothly across time, and therefore, temporally adjacent networks
are likely to share more common edges than temporally distal net-
works. This assumption allows us to aggregate observations from
adjacent time points by reweighting them, and decompose the pro-
blem of estimating time-evolving networks into one of estimating a
sequence of separate and static networks. Extending the highly sca-
lable optimization algorithms of `1-regularized logistic regression,
we are able to apply our method to reverse engineer a genome-wide
interactions with a temporal resolution up to every single time point.

It is worth emphasizing that earlier algorithms, such as the
structure learning algorithms for dynamic Bayesian network (Ong,
2002), learns a time-homogeneous dynamic system with fixed node
dependencies, which is entirely different from our approach, which
aims at snapshots of rewiring network. Our approach is also very
different from earlier approaches which start from a priori static
networks and then trace time-depencent activities. For example, the
trace-back algorithm (Luscombe et al., 2004) that enables the reve-
lation of network changes over time in yeast is based on assigning
time labels to the edges in a priori static summary network. The
Achilles’ heel of this approach is that edges that are transient over a
short period of time may be missed by the summary static network in
the first place. The DREM program (Ernst et al., 2007) reconstructs
dynamic regulatory maps by tracking bifurcation points of a regula-
tory cascade according to the ChIP-chip data over short time course.
This is also different from our method, because Keller aims at reco-
vering the entire time-varying networks, not only the interactions
due to protein-DNA binding, from long time series with arbitrary
temporal resolution. One related approach is the Tesla algorithm
by Ahmed et al. (2008). However, Tesla aims at recovering bursty
rather than smoothly varying networks.

We applied our method to reverse engineer the time-evolving
network between 588 genes involved in the developmental pro-
cess during the life cycle of Drosophila melanogaster. These genes
are a subset of the 4028 gene whose expression values are mea-
sured in a 66-step time series documented in Arbeitman et al.
(2002). We validated the biological plausibility of the estimated
time-evolving network from various aspects, ranging from the acti-
vity of functionally coherent gene sets, to previous experimentally
verified interactions between genes, to regulatory cascade involved
in nervous sytem development and to gene functional enrichment.
More importantly, the availability of time-evolving networks gives
us the opportunity to further study the rich temporal phenomena
underlying the biological processes that is not attainable using the
traditional static network. For instance, such a downstream analysis
can be a latent functional analysis of the genes in the time-evolving
network appeared in our companion submission (Fu et al., 2009).

The remainder of the paper is structured as follows. In Section 2,
we will introduce our kernel reweighted method. In Section 3. we
will use synthetic data and a time series of gene expression data col-
lected during the life cycle of Drosophila melanogaster to show the

advantage as well as biological plausibility of estimating a dynamic
network. We conclude the paper with a discussion and outlook on
future work (Section 4).

2 METHODS
First we introduce our time-evolving network model for gene
expression data, then explain our algorithm for estimating the time-
evolving network, and finally discuss the statistical property and
parameter tuning for our algorithm.

2.1 Modeling Time Series of Gene Expression
Microarray profiling can simultaneously measure the abundance
of transcripts from tens of thousands of genes. This technology
provides a snapshot into the cell at a particular time point in a
genome-wide fashion. However, microarray measurements are far
from the exact values of the expression levels. First, the samples
prepared for microarray experiments are usually a mixture of cells
from different tissues and, possibly, at different points of a cell
cycle or developmental stage. This means that microarray measu-
rements are only rough estimates of the average expression levels of
the mixture. Other sources of noise can also be introduced into the
microarray measurements, e.g. during the stage of hybridization,
digitization and normalization. Therefore, it is more robust if we
only consider the qualitative level of gene expression rather than its
actual value. That is we model gene expression as either being up-
regulated or down-regulated. For this reason, we binarize the gene
expression levels into X := {−1, 1} (−1 for down-regulated and 1
for up-regulated). For instance, for cDNA microarray, we can sim-
ply threshold at 0 the log ratio of the expression levels to those of
the reference, above which a gene is declared to be up-regulated and
otherwise down-regulated.

At a particular time point t, we denote the microarray mea-
surements for p genes as a vector of random variables X(t) :=

(X
(t)
1 , . . . , X

(t)
p )> ∈ X p, where we have adopted the convention

that the subscripts index the genes and the bracketed superscripts
index the time point. We model the distribution of the expression
values for these p genes at any given time point t as a binary pairwise
Markov Random Field (MRF):

Pθ(t)(X
(t)) :=

1

Z(θ(t))
exp

0@ X
(u,v)∈E(t)

θ(t)
uvX(t)

u X(t)
v

1A , (1)

where θ
(t)
uv = θ

(t)
vu ∈ R is the parameter indicating the strength

of undirected interaction between gene u and v; and a θ
(t)
uv = 0

means that the expression values for gene u and v are conditionally
independent given the values of all other genes. Therefore, a MRF
is also associated to a network G(t) with a set of nodes V and a set
of edges E(t): V corresponds to the invariant set of genes and hence
without the superscript for time; each edge in E(t) corresponds to an
undirected interaction between two genes (and a nonzero θ

(t)
uv ). The

difference between E(t) and θ
(t)
uv can be viewed as follows: E(t) only

codes the structure of the model while θ
(t)
uv contains all information

about the model. Finally, the partition function Z(θ(t)) in a MRF
normalizes the model to a distribution.

The dynamic interactions between genes underlying temporal
biological processes are reflected in the change of the magnitude
of parameter θ

(t)
uv across time. In particular, increased values of
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θ
(t)
uv indicate strengthened or emerging interaction between gene u

and v, and descreased values indicate weakened or disappearing
interaction. Furthermore, we assume that the dynamic interacti-
ons between genes vary smoothly across time. Mathematically, this
means that the change of θ

(t)
uv is small across time, i.e. the difference

|θ(t)
uv − θ

(t+1)
uv | is upper bounded by a small constant Cθ . In other

words, the networks at adjacent time points, G(t) and G(t+1) are
very similar, i.e. |E

(t)∩E(t+1)|
|E(t)| is lower bounded by a large constant

CE (here we used | · | to denote the cardinality of a set).
Given time series of gene expression data measured at n time

points, D := {x(t1), . . . , x(tn)}, our goal is to estimate a tem-
poral sequence of networks G := {G(t1), . . . ,G(tn)} with each
network for one time point. Note that we will focus on estimating
the structures of the interactions between genes (G(t)) rather than
the detailed strength of these interactions (θ(t)). We hope by restric-
ting our attention to estimating the structure we can obtain better
guarantees in terms of the ability of our algorithm to recover the
true underlying interactions between genes. In Section 2.2 and 2.4
we will provide further explanation on the advantage of focusing on
G(t).

Another important point of clarification is that the interactions
between genes we are modeling are the statistical dependencies bet-
ween their expression levels. This is a common choice for many
existing methods, such as the methods by Friedman et al. (2000)
and Ong (2002). Note that statistical dependency is different from
causality, which focuses on directed statistical relations between
random variables. In other words, it is more appropriate to view net-
works from our model as the co-regulation relations between genes.
That is, if there is an edge between two genes in the dynamic net-
work at time point t, then the changes of the expression levels of
these two genes are likely to be regulated by the same biological
process.

2.2 Estimating Dynamic Network
Two questions need to be addressed when we estimate a dynamic
network. First, what is the objective to optimize and second, what
is the algorithmic procedure for the estimation? The first question
is addressed in this section and it concerns both the consistency
and efficiency of our method while the second question only con-
cerns the efficiency of the algorithm, which we will discuss more in
Section 2.3.

First, estimating the parameter vector θ(t) by maximizing log-
likelihood is not practically feasible since the evaluation of the
partition function Z(θ(t)) involves a summation of exponential
number of terms. Another approach to address this problem is to
use a surrogate likelihood function, which can be tractably opti-
mized. However, there is no statistical guarantee on how close an
estimate obtained through maximization of a surrogate likelihood is
to the true parameter (Banerjee et al., 2008). Therefore, we adapt
the neighborhood selection procedure of Wainwright et al. (2006)
to estimate the time-evolving network G(t) instead.

Overall, we have designed a method that decomposes the pro-
blem of estimating the time-evolving network along two orthogonal
axes. The first axis is along the time, where we estimate the net-
work for each time point separately by reweighting the observations
accordingly; and the second axis is along the set of genes, where we
estimate the neighborhood for each gene separately and then joining
these neighborhoods to form the overall network. The additional

benefit of such decompostion is that the estimation problem is redu-
ced to a set of identical atomic optimization tasks in equation (3). In
the next section, we will discuss our procedure to solve this atomic
optimization task efficiently.

In this new approach, estimating the network G(t) is equivalent
to recovering, for each gene u ∈ V , its neighborhood of genes that
u is interacting with, i.e. N (t)(u) := {v ∈ V | (u, v) ∈ E(t)}.
It is intuitive that if we can correctly estimate the neighborhood
for all genes u in V , we can recover the network G(ti) by joining
these neighborhoods. In this alternative view, we can decompose
the joint distribution in equation (1) into a product of conditional
distributions, Pθ(t)(X

(t)
u |X(t)

\u ), each of which is the distribution of
the expression value of gene u conditioned on the expression values
of all other genes (we used \u to denote the set of genes except
gene u, i.e. \u := V − {u}). In particular, Pθ(t)(X

(t)
u |X(t)

\u ) takes
the form:

P
θ
(t)
\u

(X(t)
u |X

(t)

\u ) =
exp

“
2X

(t)
u

D
θ
(t)

\u , X
(t)

\u

E”
exp

“
2X

(t)
u

D
θ
(t)

\u , X
(t)

\u

E”
+ 1

, (2)

where 〈a, b〉 = a>b denotes inner product and θ
(t)

\u := {θ(t)
uv | v ∈

\u} is the (p − 1)-dimensional subvector of parameters associated
with gene u. The neighborhood N (t)(u) can be estimated from the
sparsity pattern of the subvector θ

(t)

\u . Therefore, estimating the net-

work G(t) at time point t can be decomposed into p tasks, each for
the subvector θ

(t)

\u corresponding to a gene. For later exposition, we
denote the log-likelihood of an observation x under equation (2) as
γ(θ

(t)

\u ; x) = log P
θ
(t)
\u

(xu|x\u).

Recall that we assume that the time-evolving network varies
smoothly across time. This assumption allows us to borrow infor-
mation across time by reweighting the observations from different
time points and then treating them as if they were i.i.d. observations.
Intuitively, the weighting should place more emphasis on observa-
tions at or near time point t with weights becoming smaller as the
observations move further away from time point t. Such reweighting
technique has been employed in other tools for time series analyses,
such as the short-time Fourier transformation where observations
are reweighted before applying the Fourier transformation to cap-
ture transient frequency components (Nawab and Quatieri, 1987).
In our case, at a given time point t, the weighing is defined as
w(t)(ti) :=

Khn (t−ti)Pn
i=1 Khn (t−ti)

, where Khn(·) := K( ·
hn

) is a sym-
metric nonnegative kernel and hn is the kernel bandwidth. We used
the Gaussian RBF kernel, Khn(t) = exp( t2

hn
), in our later expe-

riments. Note that multiple measurements at one time point can be
trivially handled by assigning them the same weight. We consider
multiple measurements to be i.i.d. observations.

Additionally, we will assume that the true network is sparse, or
that the interactions between genes can be approximated with a
sparse model. This sparsity assumption holds well in most cases. For
example, a transcription factor only controls a small fraction of tar-
get genes under a specific condition (Davidson, 2001). Then, given
a time series of gene expression data measured at n time points,
D = {x(t1), . . . , x(tn)}, we can estimate θ

(t)

\u or the neighbor-

hood of N (t)(u) of gene u at time point t using an `1 penalized
log-likelihood maximization. Equivalently the estimator θ̂

(t)

\u is the
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solution of the following minimization problem:

θ̂
(t)

\u = argmin
θ
(t)
\u
∈Rp−1

 
−

nX
i=1

w(t)(ti)γ(θ
(t)

\u ; x(ti)) + λ
‚‚‚θ(t)

\u

‚‚‚
1

!
,

(3)
where λ ≥ 0 is a regularization parameter specified by user that con-
trols the size of the estimated neighborhood, and hence the sparsity
of the network. Then, the neighborhood for gene u can be estimated
as N̂ (t)(u) = {v ∈ V | θ̂(t)

uv 6= 0}, and the network can be estimated
by joining these neighborhoods:

Ê(t) =
n

(u, v)|v ∈ N̂ (t)(u) or u ∈ N̂ (t)(v)
o

. (4)

2.3 Efficient Optimization
Estimating time-evolving networks using the decomposition scheme
described in previous section requires solving a collection of opti-
mization problems given in equation (3). In a genome-wide reverse
engineering task, there are tens of thousands of genes and hundreds
of time points, so one can easily have a million optimization pro-
blems. Therefore, it is essential to develop an efficient algorithm
for solving the atomic optimization problem in equation (3), which
can then be trivially parallelized across different genes and different
time points.

The optimization problem in equation (3) is an `1 penalized
logistic regression with observation reweighting. This optimization
problem has been an active research area in the machine learning
community and various methods have been developed, including
interior point methods (Koh et al., 2007), trust region newton
methods (Lin et al., 2008) and projected gradient methods (Duchi
et al., 2008). In this paper, we employed a projected gradient method
due to its simplicity and efficiency.

The optimization problem in (3) can be equivalently written in a
constrained form:

θ̂
(t)

\u = argmin‚‚‚θ
(t)
\u

‚‚‚
1
≤Cλ

 
−

nX
i=1

w(t)(ti)γ(θ
(t)

\u ; x(ti))

!
, (5)

where Cλ is an upper bound for the `1 norm of θ
(t)

\u and defines a
region Ω in which the parameter lies. There is an one-to-one cor-
respondence between Cλ in equation (5) and λ in equation (3). In
this formulation, the objective L(θ

(t)

\u ) is a smooth and convex func-

tion, and its gradient with respect to θ
(t)

\u can be computed simply as

∇(t) := ∂L(θ
(t)

\u ) = −
Pn

i=1 w(t)(ti)∂γ(θ
(t)

\u ).
The key idea of a projected gradient method is to update the para-

meter along the negative gradient direction. After the update, if the
parameter lies outside the region Ω, it is projected back into the
region Ω, otherwise, we move to the next iteration. The essential
step in the algorithm is the efficiency with which we can project the
parameter into the region Ω:

θ
(t)

\u ← ΠΩ

“
θ
(t)

\u − η∇(t)
”

, (6)

where ΠΩ(a) := argminb{‖a− b‖ |b ∈ Ω} is the Euclidean pro-
jection of a vector a onto a region Ω. We employed an approach
by Duchi et al. (2008) which involves only simple operations such
as sorting and thresholding for this projection step.

Algorithm 1 gives a summary of the projected gradient method
for the optimization problem in equation (3). Note that the pro-
jected gradient algorithm has several internal parameters α, ε and
σ, which, in our experiments, we set to typical values given in the
literature (Bertsekas, 1999).

Algorithm 1 Projected Gradient Method for Equation (5)

Input: A time series D = {x(t1), . . . , x(tn)}, an upper bound Cλ

Output: θ̂
(t)

\u

1: Initialize θ̂
(t)

\u , θ̃
(t)

\u , set α = 0.1, ε = 10−6, σ = 10−2

2: repeat
3: θ̂

(t)

\u ← θ̃
(t)

\u , η ← 1.0
4: repeat
5: θ̃

(t)

\u ← ΠΩ

“
θ
(t)

\u − η∇(t)
”

, η ← αη

6: until L(θ̃
(t)

\u )− L(θ̂
(t)

\u ) ≤ σ∇(t)(θ̃
(t)

\u − θ̂
(t)

\u )

7: until ‖θ̂(t)

\u − θ̃
(t)

\u‖ ≤ ε

8: θ̂
(t)

\u ← θ̃
(t)

\u

2.4 Statistical Property
The main topic we discuss here is whether the algorithm descri-
bed in Section 2.2 can estimate the true underlying time-evolving
network correctly. In order to study the statistical guarantees of
our algorithm, we need to take three aspects into account. First,
a genome-wide reverse engineering task can involve tens of thou-
sands of genes while the number of observations in time series can
be quite limited (hundreds at most). Therefore, it is important to
study the case in which the dimension p scales with respect to the
sample size n, but still allows for recovery of networks. Second,
the time-evolving nature of networks adds extra complication to
the estimation problem, so, we have to take the amount of change
between adjacent networks, Cθ := maxuv ‖θ(t)

uv − θ
(t+1)
uv ‖, into

account. Third, the intrinsic properties of the interactions between
genes will also affect the correct recovery of the networks. Intui-
tively, the more complicated interactions the more difficut it is to
recover networks, e.g. each gene interacts with a large fraction of
other genes. In other words, the maximum size of the neighbor-
hood for a gene CN := maxu∈V N (u) is also a deciding factor. To
our knowledge, none of the ealier methods Friedman et al. (2000);
Ong (2002); Basso et al. (2005) provide a statistical guarantee for
recovered networks or are amenable to such analysis.

In contrast, the method we designed in Section 2.2 is highly
amenable to a rigorous statistical analysis. Statistical guarantees
have been provided for estimating static networks under the model
in equation (1) (Wainwright et al., 2006) and we can extened them
to the time-varying case. A detailed proof of a similar result for our
approach is beyond the scope of this paper and deserves a full treat-
ment in a separate paper. At a high level, we can show that under a
set of suitable conditions over the model, Cθ , CN , hn and λ, with
high probablity, we can recover the true underlying time-evolving
network even when the number of genes p is exponential in size of
the number of observations n. A different analysis have been provi-
ded for time-varying Gaussian graphical models (Zhou et al., 2008),
in which the consistency of interaction strengths is addressed, but
not the consistency of network topology.
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2.5 Parameter Tuning
The choice of bandwidth parameter hn should trade off the smooth-
ness of the change in the time evolving networks and the coverage of
samples used to estimate the network. Using a wider bandwith pro-
vides more samples to estimate the network, but it also introduces
more bias and risks missing sharper changes in the network; using a
narrower bandwidth parameter makes the estimate more sensitive to
sharper changes, but this also makes the estimation subject to larger
variance due to the reduced effective sample size. In this paper, we
adopt a heuristic for tuning the inital scale of the bandwidth para-
meter: we first form a matrix (dij) with its entries dij := (ti − tj)

2

(i = {1, . . . , n}). Then the scale of the bandwidth parameter is set
to the median of the entries in (dij). In our simulation experiments,
we find that this heuristic provides a good initial guess for hn, and
it is quite close to the value obtained via more exhaustive search.

3 EXPERIMENTS
In this section, we used synthetic data to demonstrate the advantange
of estimating a time-evolving network, and we used data collected
from Drosophila to show that our method can estimate a biologi-
cally plausible time-evolving network and reveal the general some
interesting properties of the interactions between genes.

3.1 Recovering Synthetic Networks
In this section, we demonstrate the effectiveness of the proposed
method in simulations and compare it to a method estimating a
static network. When estimating a static network, we applied a uni-
form weight w(ti) = 1

n
to all observations and optimize the same

objective as in equation (5).
Starting at time t1, we generate an Erdös-Rényi random graph
G(t1) of p = 50 nodes with an average degree of 2. The parameter
θ
(t1)
uv for the nonzero edges is chosen uniformly random from the

range [1, 2]. Then, we randomly select 15 edges and gradually des-
crease their weights to zero in 200 time points. Starting from t1, we
also chose 15 new edges and gradually increase their weights to a
random target value between [1, 2] in 200 time points. Therefore, in
the first 200 discrete time steps, 15 existing edges are deleted, 15
new edges are added, and the network maintain an overall size of
50 edges. We call these 30 time-evolving edges as dynamic edges
and the remaining 35 edges as static edges. Then from time point
200, we start the second cycle of deleting 15 edges and adding 15
edges. Such cycle is repeated 5 times, which results in a smooth
time-evolving network with n = 1000 time point. Furthermore,
we draw 10 i.i.d. observations from the network at each time point
and study how the performance of different methods scales with the
number of i.i.d. observations at each time point.

We evaluate the estimation procedures using an F1 score, which
is the harmonic mean of precision (Pre) and recall (Rec) , i.e. F1 :=
2∗Pre∗Rec
Pre+Rec

. Precision is calculated as 1
n

Pn
i=1

|Ê(ti)∩E(ti)|
|Ê(ti)|

, and

recall as 1
n

Pn
i=1

|Ê(ti)∩E(ti)|
|E(ti)|

. The F1 score is a natural choice
of the performance measure as it tries to balance between preci-
sion and recall; only when both precision and recall are high can
F1 be high. Furthermore, we used an initial bandwidth parameter
hn as explained in Section 2.5, then searched over a grid of para-
meters (10[−0.5:0.1:0.5] for λ and hn × [0.5, 1, 2, 5, 10, 50] for the

(a) (b) (c)

Fig. 1. As we increase the number of i.i.d. samples at each time point, our
method estimating a time-evolving network clearly outperforms a method
estimating a static network. In subplot (a), we display the performances
for the overall networks, while in (b) and (c) respectively, we display the
performance specifically for the dynamic edges and static edges.

bandwidth), and finally chose one that optimizes the BIC-type cri-
terion. When estimating the static network, we used the same range
to search for λ.

The recovery results for the overall time-evolving network, the
dynamic and static edges are presented respectively in Figure 1.
From the plots, we can see that estimating a static network does
not benefit from increasing number of i.i.d. observations at all. In
contrast, estimating a time-varying network always obtains a better
performance and the performance also increases as more observa-
tions are available. Note that these results are not surprising since
our time-varying network model fits better the data generating pro-
cess. As time-evolving networks occur very often in biological
systems, we expect our method will also have significant advantages
in practice.

3.2 Recovering Time-Evolving Interactions between
Genes in Drosophila Melanogaster

In this section, we used our method to reverse engineer the dynamic
interactions between genes from Drosophila melanogaster based on
a time series of expression data measured during its full life cycle.
Over the developmental course of Drosophila melanogaster, there
exist multiple underlying “themes” that determine the functionali-
ties of each gene and their relationships to each other, and such
themes are dynamical and stochastic. As a result, the gene regu-
latory networks at each time point are context-dependent and can
undergo systematic rewiring, rather than being invariant over time.
In a seminal study by Luscombe et al. (2004), it was shown that
the “active regulatory paths” in the gene regulatory networks of
Saccharomyces cerevisiae exhibit topological changes and hub tran-
sience during temporal cellular processes and in response to diverse
stimuli. We expect that similar patterns of interaction can also be
observed for the genes from Drosophila melanogaster.

We used microarray gene expression measurements collected
by Arbeitman et al. (2002) as our input data. In such an experiment,
the expression levels of 4028 genes are simultaneously measured
at various developmental stages. Particularly, 66 time points are
chosen during the full developmental cycle of Drosophila melano-
gaster, spanning across four different stages, i.e. embryonic (1–30
time point), larval (31–40 time point), pupal (41–58 time points) and
adult stages (59–66 time points). In this study, we focused on 588
genes that are known to be related to developmental process based
on their gene ontologies.
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(a) t = 1 (b) t = 4 (c) t = 8 (d) t = 12 (e) t = 16 (f) t = 18 (g) t = 24 (h) t = 35 (i) t = 47 (j) t = 62

Fig. 3. (a-j) Circular plots of the networks (top part of each table cell) and dot plots of the adjacency matrices of the networks (bottom part of each table cell)
at 10 time points. Note that we have clustered the genes according to the network connections at time point 1 and used this clustering result to fix the order of
the genes in all plots. In the circular plots, genes are arranged along the outer rim and the colors indicates the boundaries between different clusters (20 clusters
in total). Furthermore, we have added curvature to the edges such that connections within and between clusters can be seen more clearly.

In Figure 2(a), we plotted two different statistics of the reversed
engineered gene regulatory networks as a function of the develop-
mental time point (1–66). The first statistic is the network size as
measured by the number of edges; and the second is the average
local clustering coefficient as defined by Watts and Strogatz (1998).
For comparison, we normalized both statistics to the range between
[0, 1]. It can be seen that the network size and its local clustering
coefficient follow very different trajectories during the developmen-
tal cycle. The network size exhibits a wave structure featuring two
peaks at mid-embryonic stage and the beginning of pupal stage.
Similar pattern of gene activity has also been observed by Arbeit-
man et al. (2002). In contrast, the clustering coefficients of the
time-evolving networks drop sharply after the mid-embryonic stage,
and they stays low until the start of the adult stage. One explanation
is that at the beginning of the development process, genes have a
more fixed and localized function, and they mainly interact with
other genes with similar functions; however, after mid-embryonic
stage, genes become more versatile and involved in more diverse
roles to serve the need of rapid development; as the organism turns
into an adult, its growth slows down and each gene may have been
restored to its more specialized role. To illustrate how the network
properties change over time, we visualized two networks from mid-
embryonic stage (time point 15) and mid-pupal stage (time point
45) in Figure 2(b) and 2(c) respectively. Although the size of the
two networks are comparable, we can see that there are much more

(a) Network statistics (b) Embryonic stage (c) Pupal stage

Fig. 2. Characteristic of the time-evolving networks estimated for the genes
related to developmental process. (a) Plot of two network statistics as func-
tions of development time line. (b) and (c) visualization of two example of
networks from different time point. We can see that network size can evolve
in a very different way from the local clustering coefficient.

clear local cluster of interacting genes during mid-embryonic stage.
To provide a better view of the evolving nature of these clusters, we
cluster genes based on the network at time point 1 using spectral
clustering, and visualize the gradual dissappearing of these clusters
in Figure 3. Note that our visualization does not indicate that genes
do not form clusters in later developmental stage. Genes may cluster
under different groupings, but these clusters can not be revealed by
the visualization since the positions of the genes have been fixed in
the visualization.

To judge whether the learned networks make sense biologically,
we zoom into three groups of genes functionally related to diffe-
rent stages of development process. In particular, the first group
(30 genes) is related to embryonic development based on their
functional ontologies; the second group (27 genes) is related to post-
embryonic development; and the third group (25 genes) is related
to muscle development. We used interactivity, which is the total
number of edges a group of genes is connected to, to describe the
activitiy of each group genes. In Figure 4, we plotted the time cour-
ses of interactivity for the three groups respectively. For comparison,
we normalize all scores to the range of [0, 1]. We see that the time
courses have a nice correspondence with their supposed roles. For
instance, embryonic development genes have the highest interac-
tivity during embryonic stage, and post-embryonic genes increase
their interacativity during larval and pupal stage. The muscle deve-
lopment genes are less specific to certain developmental stages,
since they are needed across the developmental cycle. However, we
see its increased activity when the organism approaches its adult
stage where muscle development becomes increasingly important.

The estimated networks also recover many known interactions
between genes. In recovering these known interactions, the time-
evolving networks also provide additional information as to when
interactions occur during development. In Figure 1, we listed these
recovered known interactions and the precise time when they occur.
This also provides a way to check whether the learned networks are
biologically plausible given the prior knowledge of the actual occu-
rence of gene interactions. For instance, the interaction between
genes msn and dock is related to the regulation of embryonic cell
shape, correct targeting of photoreceptor axons. This is very consi-
stent with the timeline provided by the time-evolving networks. A
second example is the interaction between genes sno and Dl which
is related to the development of compound eyes of Drosophila. A
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(a) (b) (c)

Fig. 4. Interactivity of 3 groups of genes related to (a) embryonic develop-
ment; (b) post-embryonic development and (c) muscle development. The
higher the interactivity, the more active the group of genes. We see that
the interactivity of the three groups is very consistent with their functional
annotation.

third example is between genes caps and Chi which are related to
wing development during pupal stage. What is most interesting is
that the time-evolving networks provide timelines for many other
gene interactions that have not yet been verified experimentally.
This information will be a useful guide for future experiments.

Table 1. Timeline of 45 known gene interactions. Each cell in the plot cor-
responds to one gene pair of gene interaction at one specific time point. The
cells in each row are ordered according to their time point, ranging from
embryonic stage (E) to larval stage (L), to pupal stage (P), and to adult stage
(A). Cells colored blue indicate the corresponding interaction listed in the
right column is present in the estimated network; blank color indicates the
interaction is absent.

CycE CycA
CycE Rca1
Dp CycE
Gi Go
Hem blow
Ice Ark
Jra dnc
Nf1 dnc
Pak trio
Sb Rho1
Snap Syx1A
Src42A ksr
W nej
brk tkv
brm N
brm shg
btl stumps
cact dl
caps Chi
da Dl
dally sgl
dl Dif
dom E(z)
ea Tl
emc bs
esc E(z)
gl peb
hep p53
mam wg
msn Nrt
msn dock
nej th
numb Rca1
pbl CycE
pbl Src64B
pbl dl
pbl tum
pnr svr
pros Abl
pros pnt
sdt baz
sno Dl
spen ksr
tsh wg
up Mhc

We further studied the relations between 130 transcriptional fac-
tors (TF). The network contains several cluster of transcriptional

(a) Summary network

(b) Embryonic stage (c) Larval stage

(d) Pupal stage (e) Adult stage

Fig. 5. The largest transcriptional factors (TF) cascade involving 36 tran-
scriptional factors. (a) The summary network is obtained by summing the
networks from all time points. Each node in the network represents a tran-
scriptional factor, and each edge represents an interaction between them.
The width of an edge is proportional to the number of the times the edge
is present during the development; the size of a node is proportional to
the sum of its edge weights. During different stages of the development,
the networks are different, (b,c,d,e) shows representative networks for the
embryonic (t = 15), larval (t = 35), pupal (t = 49) and adult stage of the
development respectively (t = 62).

cascades, and we will present the detail of the largest transcriptional
factor cascade involving 36 transcriptional factors (Figure 5). This
cascade of TFs is functionally very coherent, and many TFs in this
network play important roles in the nervous system and eye deve-
lopment. For example, Zn finger homeodomain 1 (zhf1), brinker
(brk), charlatan (chn), decapentaplegic (dpp), invected (inv), fork-
head box, subgroup 0 (foxo), Optix, eagle (eg), prospero (pros),
pointed (pnt), thickveins (tkv), extra macrochaetae (emc), lilliputian
(lilli), doublesex (dsx) are all involved in nervous and eye develop-
ment. Besides functional coherence, the networks also reveals the
dynamic nature of gene regulation: some relations are persistent
across the full developmental cycle while many others are transi-
ent and specific to certain stages of development. For instance, five
transcriptional factors, brk-pnt-zfh1-pros-dpp, form a long cascade
of regulatory relations which are active across the full developmen-
tal cycle. Another example is gene Optix which are active across the
full developmental cycle and serves as a hub for many other regu-
latory relations. As for transience of the regulatory relations, TFs
to the right of Optix hub reduced in their activity as development
proceeds to later stage. Furthermore, Optix connects two disjoint
cascade of gene regulations to its left and right side after embryonic
stage.
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(a) Avgerage network. Each color patch denotes an ontological
group, and the position of these ontological groups remain the
same from (a) to (u). The annotation in the outer rim indicates
the function of each group.

(b) t = 1 (c) t = 4 (d) t = 8 (e) t = 12 (f) t = 16

(g) t = 20 (h) t = 24 (i) t = 28 (j) t = 32 (k) t = 35

(l) t = 38 (m) t = 41 (n) t = 44 (o) t = 47 (p) t = 50

(q) t = 53 (r) t = 56 (s) t = 59 (t) t = 62 (u) t = 65

Fig. 6. Interactions between gene ontological groups related to developmental process undergo dynamic rewiring. The weight of an edge between two
ontological groups is the total number of connection between genes in the two groups. In the visualization, the width of an edge is proportional to its edge
weight. We thresholded the edge weight at 30 in (b)-(u) so that only those interactions exceeding this number are displayed. The average network in (a) is
produced by averaging the networks underlying (b)-(u). In this case, the threshold is set to 20 instead.

The time-evolving networks also provide an overview of the inter-
actions between genes from different functional groups. In Figure 6,
we grouped genes according to 58 ontologies and visualized the
connectivity between groups. We can see that large topological
changes and network rewiring occur between functional groups.
Besides expected interactions, the figure also reveals many see-
mingly unexpected interactions. For instance, during the transition
from pupa stage to adult stage, Drosophila is undergoing a huge
metamorphosis. One major feature of this metamorphosis is the
development of the wing. As can be seen from Figure 6(r) and 6(s),
genes related to metamorphosis, wing margin morphogensis, wing
vein morphogenesis and apposition of wing surfaces are among the
most active group of genes, and they carry their activity into adult
stage. Actually, many of these genes are also very active during
early embryonic stage (for example, Figure 6(b) and 6(c)); the dif-
ferent is though they interact with different groups of genes. On one
hand, the abundance of the transcripts from these genes at embryo-
nic stage is likely due to maternal deposit (Arbeitman et al., 2002);
on the other hand, this can also be due to the diverse functionali-
ties of these genes. In Table 2, we listed 12 genes related to wing
development of Drosophila which have a diverse number of other
functions. We can see that many of these genes also play roles in
normal cell growth, cell proliferation and embryonic development.

4 CONCLUSION
Numerous algorithms have been developed for inferring biological
networks from high throughput experimental data, such as microar-
ray profiles (Ong, 2002; Segal et al., 2003), ChIP-chip genome
localization data (Lee et al., 2002; Bar-Joseph et al., 2003; Har-
bison et al., 2004), and protein-protein interaction (PPI) data (Uetz
et al., 2000; Giot et al., 2003; Kelley et al., 2004; Causier, 2004),
based on formalisms such as graph mining (Tanay et al., 2004),
Bayesian networks (Cowell et al., 1999), and dynamic Bayesian
networks (Kanazawa et al., 1995; Friedman et al., 2000). Howe-
ver, most of this vast literature focused on modeling static network
or time-invariant networks, and much less has been done towards
modeling the dynamic processes underlying networks that are topo-
logically rewiring and semantically evolving over time. The method
presented in this paper represents a successful and practical tool
for genome-wide reverse engineering dynamic interactions between
genes based on their expression data.

Given the rapid expansion of categorization and characterization
of biological samples, and the improved data collection techno-
logies, we expect collections of complex, high-dimensional, and
feature rich data from complex dynamic biological processes, such
as cancer progression, immune response, and developmental proces-
ses, to continue to grow. Thus we believe our new method is a timely
contribution that can narrow the gap between imminent methodolo-
gical needs and the available data, and offer deeper understanding
of the mechanisms and processes underlying biological networks.
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Table 2. Genes related to wing development also play roles in normal cell growth and embryonic development. Note that the genes in the left column of the
table are all related to wing development. Hence in the right column of the table we only listed functions other than wing development.

Gene Name Other Functions
dachs (d) positive regulation of growth
moleskin (msk) cell proliferation, protein import into nucleus, docking, compound eye development
extra macrochaetae (emc) cell proliferation, nervous system development, sex determination
decapentaplegic (dpp) anterior/posterior axis specification, cell fate specification, compound eye morphogenesis, heart development, germ-line stem cell division
Delta (Dl) cell fate specification, mesoderm development, oogenesis, stem cell differentiation, open tracheal system development, compound eye development
schnurri (shn) negative regulation of cell proliferation, midgut development, learning and/or memory
tolloid (tld) embryonic pattern specification, terminal region determination, zygotic determination of dorsal/ventral axis, regulation of transforming growth factor
short stop (shot) cell cycle arrest, oocyte fate determination, muscle attachment
rhea cell adhesion, regulation of cell shape, muscle attachment, negative regulation of gene-specific transcription
held out wings (how) embryonic development, cell differentiation, mesoderm development, somatic muscle development, regulation of alternative nuclear mRNA splicing
blistered (bs) cell fate commitment, open tracheal system development
piopio (pio) chitin-based embryonic cuticle biosynthetic process
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